Главное Авторские колонки Вакансии Образование
😼
Выбор
редакции
2 938 0 В избр. Сохранено
Авторизуйтесь
Вход с паролем

735 лидов, в которые никто не верил: как Post-campaign аналитика Яндекса изменила мнение о медийке

Наше агентство AGM Group специализируется на работе с девелоперами. В портфеле компании свыше 200 проектов по продвижению застройщиков в тринадцати регионах России. В кейсе расскажем, как запустили медийную кампанию c Post-campaign аналитикой и доказали ее эффективность.
Мнение автора может не совпадать с мнением редакции

О клиенте

ПЗСП — пермская строительная компания, лидер по объемам строительства в регионе. В портфеле застройщика новостройки комфорт и эконом класса. Нас объединяет более 7 лет совместной работы и достижений. Только за 2021-2022 год мы привели более 6400 лидов.

На данный момент мы активно продвигаем 4 объекта в разных районах города с помощью контекстной и медийной рекламы, а также размещения в Яндекс.Недвижимости.

Задача

В июле 2022 года в ПЗСП стартовала акция «Ипотека 0,1%», которую также транслировали и другие застройщики. Основной задачей было «затмить» конкурентов — охватить максимум целевой аудитории и подогреть спрос этой привлекательной акцией именно у нашего девелопера.

Подключение медийной рекламы, аргументы и возражения

Для этой цели подходила медийная реклама на площадках Яндекса. Но было одно НО: коллеги из ПЗСП сомневались в эффективности этого инструмента и бюджет, выделяемый на медийную кампанию, исторически не превышал 50 000 руб. в месяц.

Решением стала встреча специалистов AGM и девелопера с менеджерами Яндекса, которые презентовали post-campaign аналитику по текущему медийному размещению.

Post-campaign аналитика дает возможность сравнить показатели (визиты, время на сайте, конверсию) по двум группам пользователей:

  1. тем, кто видел рекламные медийные объявления (контрольная группа)
  2. и тем, кто не видел такие размещения и посещал сайт.

Это позволяет проследить разницу в поведении групп пользователей, сделать выводы об эффективности медийной рекламы и принять решение о дальнейших размещениях. Отчет описывает 2 типа данных:

  1. общие показатели по медийной рекламе: охваты, показы, частота показов, клики, CPM, CTR, распределение по устройствам;
  2. post-view показатели медийной рекламы: lift на поиске (изменение брендового трафика), lift по данным метрики (изменение поведения пользователей: контрольная группа (не видели рекламу) X группа, которая видела рекламу), совершенные этой аудиторией конверсии.

Коллеги из Яндекс сделали акцент на том, что в текущем размещении используется бюджет, который не позволяет обеспечить запоминаемость рекламы (уровень индекса запоминаемости (SOV по показам). Для того, чтобы понять, какой бюджет необходим при заданных параметрах, в Яндекс есть сервис «Планирование кампаний». Чтобы сделать расчет, достаточно указать формат, параметры рекламной кампании (даты проведения, частота показа, аудитория и пр.) и уделить особое внимание показателю «SOV по показам».

По расчетам коллег, оптимальное значение этого показателя должно быть не менее 30%. Это позволит получить хорошую запоминаемость размещений и положительный измеряемый результат от РК. Приняв этот аргумент, клиент согласился на в запуск масштабной медийной кампании.

Подготовка рекламной кампании

Для акции «Ипотека 0,1%» были подготовлены баннеры с соблюдением основной айдентики девелопера, для сохранения узнаваемости во всех точках касания с аудиторией. Ключевые элементы:

  • цепляющее УТП: «Ипотека 0,1% на весь срок»;
  • бренд застройщика;
  • понятный объект продвижения.

Параллельно была запущена контекстная реклама с той же акцией.

Медийная рекламная кампания имела две группы объявлений с максимально целевыми настройками таргетинга:

Для первой группы объявлений:

  • возраст: от 25 лет;
  • интересы: жилая недвижимость, жилая недвижимость в новостройках, ипотека.

Для второй группы объявлений:

  • возраст: от 25 лет;
  • поведенческие признаки: офисы продаж квартир в новостройках, агентства недвижимости.

Так как стояла задача охватить максимум целевой аудитории, мы не стали дополнительно сужать аудиторию корректировками по полу, возрасту или супергео, а сделали ставку на максимально широкий охват при использовании целевых интересов.

Спойлер: по результатам анализа мы отказались от показов рекламы для второй группы ЦА (возраст: от 25 лет, поведенческие признаки: офисы продаж квартир в новостройках, агентства недвижимости), так как не увидели от неё отклика.

После запуска кампаний сразу запросили у Яндекса post-campaign аналитику размещения. Для последующего самостоятельного отслеживания результатов использовали сервис Яндекса «Метрика для медийной рекламы». С его помощью в режиме реального времени анализировали эффективность рекламы в Директе и на других площадках, а для более глубокой аналитики использовали сервис Callibri и Дашборды в PowerBI.

Коллтрекинг Callibri использовался в работе с проектом для оценки эффективности digital и оффлайн активностей застройщика. При помощи настроенных интеграций мы передавали данные о лидах в рекламные и аналитические системы:

—  в Метрику и Директ (использовали как цель для оптимизации + статический номер для визиток в Директе)

—  в Power-BI (там уже наглядно оценивали эффективность РК).

В итоге, Callibri в связке с Power-BI помог нам оценить эффективность РК, чаще проводить глубокую аналитику и управлять большим пулом кампаний сразу. А синхронизация Callibri с Яндекс Метрикой помогла оптимизировать рекламные кампании благодаря охвату почти всех вариантов связи, которые может инициировать клиент при посещении сайта (звонки, заявки, чаты).

Поэтому в качестве ключевой цели мы выбрали «Лид с Динамика//Динамика» — это суммирующая автоматическая цель Callibri, которая учитывает все заявки с форм и звонки, полученные со страницы акции на основном сайте клиента.

Для более детального отслеживания статистики в размещениях прописали каждый размер баннера отдельно. Таким образом мы смогли оценить:

  • каких размеров баннеры охватывают большее количество пользователей,
  • какие размеры более эффективны и получают наибольшее количество отложенных конверсий.

В итоге чаще всего пользователи видели баннеры на мобильных устройствах в форматах 320×50, 300×250 — а них приходилось около 60% от всех показов рекламной кампании. Тем не менее с точки зрения конверсии дела обстояли значительно хуже.

Наиболее конверсионными в нашем случае оказались баннеры с размерами 240×400, 728×90 и 300×600, то есть десктопные. Баннер размера 480×320 охватил всего 206 пользователей.

Для себя мы сделали вывод о том, что для оптимизации новых размещений стоит сделать акцент именно на конверсионных форматах баннеров, а от не конверсионных отказаться.

Результаты

За время рекламной кампании с 12.07 по 25.11 мы получили:

  1. 1 073 734 пользователей из Перми — почти всё население города. Из них 735 оставили заявку/связались с застройщиком;
  2. 28 прямых лидов при переходе по медийному баннеру и 707 post-view лидов при бюджете 530 000 рублей с НДС;
  3. Рост брендового трафика на 11% у пользователей, видевших медийку.

Выводы

Имея за плечами опыт, описанный в кейсе, сделали для себя такие выводы:

  1. Запуск медийки на 50000 руб в городе-миллионнике для того, чтобы была «хоть какая-то» медийная активность не имеет смысла и не оказывает влияние на спрос и узнаваемость бренда / запоминаемость акции.
  2. При расчете медийного размещения важно ориентироваться на индекс узнаваемости (SOV по показам).
  3. В медийных баннерах крайне важно использовать айдентику девелопера, чтобы сохранить узнаваемость во всех точках касания с аудиторией, особенно в случае, когда девелопер имеет такой сильный бренд, как ПЗСП
  4. Не бояться инвестировать на медийные размещения бюджет сопоставимый с бюджетом на performance, потому что это эффективно вовлекает целевую аудиторию в коммуникационную воронку и формирует отложенный спрос в виде post-view конверсий, которые происходят в digital-каналах, работающих на горячий спрос.

0
В избр. Сохранено
Авторизуйтесь
Вход с паролем