Marketing Scientist сегодня: учить уже сейчас без нового Ф. Котлера
Филип Котлер знаменит тем, что собрал воедино и систематизировал все знания о маркетинге, которые до этого относились к совершенно различным наукам. Можно сказать, что он первый, кто выделил маркетинг в отдельную специальность. Его книга Основы маркетинга переиздавалась 9 раз и является своеобразной Библией по маркетингу.
Так вот, такого человека как Ф. Котлер для использования новых каналов и описания всего того "безобразия", что твориться вокруг с количеством технологий и информации пока нет.
Но я не вижу препятствий чтобы уже сегодня начинать изучать науку о данных с приложением в маркетинге и становиться Marketing Scientist.
Marketing Scientist специализируется не просто в области анализа целевой аудитории и её потребностей, но это спец, создающий модели, которые дадут реальную пользу бизнесу в денежном эквиваленте.
Не стоит воспринимать Marketing Scientist как простого аналитика данных.
Аналитик: Инструменты анализа данных не отвечают на поставленный вопрос, значит следует переходить к другому вопросу.
Data scientist: Данные инструменты и подходы к анализу данных не могут ответить на поставленный вопрос, значит мне нужны более лучшие инструменты и данные. Значит я обращусь к другой области знаний и принесу ее парадигмы в свою работу.
Где учиться на Marketing Scientist
Люди с огромным удовольствием осваивают новые игры даже в зрелом возрасте. Было бы желание. Понятно, что темп обучения с возрастом снижается. Но есть и наиболее прогрессивные методологии, вроде той, что пытается внедрить Khan Academy. Если у Вас уже есть базовое Маркетинговое образование, то будет проще подтянуть некоторые знания на Coursera или других МООК.Дисклеймер: если Вы не любите математику или не понимает ее, то шансов овладеть наукой о данных ровно ноль. Путь в Marketing Scientist тогда закрыт.
Некоторые технических ВУЗы уже сейчас предлагают обучиться на магистров наук по науке о данных и менеджменту. Для данной специализации требуются знания в области математической статистики, машинного обучения, программирования.
Имеется (ШАД) Школа анализа данных от Яндекса. В Школе, основанной Яндексом в сентябре 2007 года, преподают машинное обучение, компьютерное зрение, анализ текстов на естественном языке и другие направления современных компьютерных наук. Ежегодно в ШАД поступают старшекурсники, выпускники и аспиранты МГУ, МФТИ, ВШЭ, ИТМО, СПбГУ, УрФУ, НГУ и других ведущих вузов. Два года студенты изучают предметы, которые обычно не входят в университетские программы, хотя пользуются огромным спросом в науке и разных отраслях, где уже применяются наукоёмкие информационные технологии.
На Coursera есть курсы по Машинному обучению и анализу данных. Вполне неплохие курсы, я их в свое время слушал.
Это вообще важно?
Часто ожидания от сайта такие: он создан и должен моментально приносить деньги, в ту же секунду привлекать посетителей (в зависимости от цели).
Но это не так по многим причинам. Если же трафика уже достаточно, то проводим A/B-тестирование (сплит-тест). Google уже как год выпустила абсолютно бесплатный инструмент для проведения таких исследований.
Проводим и смотрим где лиды активнее генерируют продажи. Google в данном инструменте забрала у Вас данные и самостоятельно проведя статистические расчеты, выдала Вам результат теста (автоматический расчет по сформированной алгоритмически выборке).
Результаты такого исследования полностью отвечают шести правилам поведенческого анализа. Однако A/B-тестирование не позволяет глубоко изучить качественные показатели. Для этого нужно использовать различные психологические уловки - формы обратной связи, обзоры на сайт/продукт и т.д.. Но важнее, что есть вероятность, что заложенные модели не совсем подходят Вашему бизнесу.
Резюме
В 2017 году владельцу интернет магазина уже не нужно опрашивать клиентов на улице. Рекомендательные сервисы и просто надстройки для CMS могут сделать вполне сносную рекомендацию для дополнительной покупки на сайте.
Можно брать уже проведенные другими большими компаниями исследования по UX/UI, правильно раскладывать и анализировать их для применения в своей сфере.
Данные о поведении пользователей — бесценны. Инвестирование в исследования просто Must Have. Мы не только начинаем понимать, что движет пользователем, строить математические модели, но и правильно рекламировать свои продукты и услуги в конечном итоге.
Подписывайтесь чтобы быть в курсе!
Наш Telegram канал: https://telegram.me/sistematika
Группа в VK — https://vk.com/nkosistema
Наш сайт - http://систематикус.рф